Revealing the secrets behind our robotic
arm: an in-depth analysis of the architecture
and inverse Kinematics

Renato Coellar Orellana
Stan Willems
Dante Vuijst

The Lab 2025
KdG University of Applied Sciences and Arts

Index

Index 1
INErOAUCTION....cueeiieriiiiiiiiiinittecittesitteessneicssseecsssnessssnessssessssnesssseessssesssssnsssssessssssssssnsssssnsssnes 2
Architecture 2
HATAWATE. ..ottt ettt ettt sat e bt eaeen 2
FITMIWATE. ..ottt ettt et b et st sat et e st s bt e be et e naeens 4

L0 (A2 (<SR 5
STMULALION. ¢ttt et ettt et e e sbae et esaeeens 6
Programming €NVITONMENL.........cccueiruieriiieriieeieetieeieeieeseeeeieeseteeseeseaeeseesseeenseenseesnseens 7
IMISCEIIANEOUS.tiiiiieiieeie ettt ettt ettt e bt et e st e e aeeenbeesseeenseesneeens 8
KINEIMATICS..cciiieiiiiiniicitiiiistiiistteiintisstncsssiessssecssssesssssesssssesssssesssssssssssessssssssssasssssnsssssnsssssnsssses 8
FOrward KINEMAtICS.cc.ueiiiiiiiiiieiteeiee ettt ettt e e s 9
INVETSE KINEMALICS. ...c.ueiuiiiiieiieiieeiiete ettt sttt ettt st sbe e eaees 9
CRALLEIEES. ...ttt ettt ettt et st e e b e et e et e s nbe e bt e e nbeenteesnteenaeeens 10
CONCIUSION. . cecnneiiiiieinieecsteessnniessnneessnnecssstecssssecsssnssssstesssessssssessssasssssnsssssessssssssssssssssasssssasans 10
References 11

Introduction

The goal of this paper is to lay-out our methodology to create our physical robotic
arm, simulated robotic arm and programming environment, made as an end project for “The
Lab”, a course in our study of Applied Computer Science. The intention behind this project
was to end up with a palpable result that encompasses all layers of a system from hardware to
software after applying all the knowledge that we have gathered over the years at KdG
University of Applied Sciences and Arts. To not go out of scope or present irrelevant
information, this study will only cover an in-depth analysis of the complete architecture and
the specific kinematics used for our robotic arm. Lastly, to get the most out of this study, it is
recommended to be familiar with concepts like basic robotics, 3D space, kinematics and
matrices.

Architecture

In the introduction to this paper, we have mentioned that our project encompasses all
system layers. In this section, we will work from the bottom up and give a thorough
explanation of the functionality utilised on each one.

Hardware

The actual creation of the physical arm was done outside of project hours and thus, is
not officially part of the project. However, it is essential to have a general idea of the machine
and its components to have sufficient context to understand the rest of this paper. Therefore,
we will give a brief overview of the physical arm.

The first step in the creation of the arm was designing it. Our robotic arm is based on
the open-source 3D printed robotic arm, the BCN3D Moveo, created by BCN3D
Technologies. After tweaking the design a bit further in a computer-aided design (CAD)
program, we had our robotic arm ready for production. The result can be seen in the
following figure.

Figure 1, the physical robotic arm

One of our objectives was to make the arm move along the x, y and z-axis and to
make it rotate in three dimensions: yaw, pitch and roll. For each of these movements, a
separate joint is needed, resulting in our robotic arm consisting of six joints in total. Looking
at figure 1, the rotating disk at the base of the arm is the joint that allows movement along the
y-axis. The two joints above the disk work conjointly, mainly for movement along the x and
z-axis. Perhaps unexpectedly, the next joint is not the following similar-looking part, but a
less visible joint in between these. This joint decides the roll, while the following joint
decides the pitch. The last joint, which controls the yaw, is integrated into the end effector.

Moreover, we also created three physical buttons with each their own functionality.
One to start the currently active routine, one to swap the current routine with a new one, and
an emergency stop button.

Firmware

Figure 2, the Raspberry Pi 5

Most firmware runs on a Raspberry Pi 5, as depicted in figure 2. All functionality
running on this component is written in Python. The Raspberry Pi is responsible for
calculating the necessary angles for the different joints of the arm through inverse kinematics,
as well as the velocity at which the joints should move. We need a separate component for
this because the microcontroller alone is not performant enough to do all these calculations
accurately and quickly enough. To obtain the necessary data for the kinematics, the
Raspberry Pi parses YAML configuration files using Pydantic. Pydantic is the most widely
used data validation library for Python (Welcome To Pydantic - Pydantic, z.d.). Afterwards, it
passes these angles and the velocity to the microcontroller.

Additionally, this unit runs a web server with FastApi to manage the connection
between the physical arm and the application on the PC. FastAPI is a modern, fast
(high-performance), web framework for building APIs with Python based on standard Python
type hints (FastAPI, z.d.). The software from the PC can send instructions over to this web
server, where they get stored in a buffer. When pressing the swap button, the program will

swap the currently active routine with the routine stored in the buffer. Pressing the start
button afterwards will start the new routine.

o
=5
-
»
%
-
s\
’”

o

Lo
’
s

Figure 3, the microcontroller

The microcontroller, a Raspberry Pi Pico, shown in figure 3, receives the angles for
the different joints calculated by the Raspberry Pi 5 plus the velocity at which the motors
should move. It will pass on these instructions to each motor. All of this is written in C as this
is a common choice for low-level programming, and we already had experience with the
language.

Software

The software can be divided into two parts. First is the programming environment,
where users can create routines to be executed by either the simulated robotic arm or the
physical one and second is the simulation, which consists of the actual rendering of the 3D
model and its animations and the inverse kinematics needed for this. This allows users to
utilise our application even without access to a physical arm or just to test created routines
before truly sending it to the physical unit. Due to computer graphics’ reputation for heavily
leveraging memory management, our programming of choice is C++, an efficient language
that allows for detailed memory management. Moreover, the majority of graphics libraries
work with C++.

Simulation

To render the environment and 3D model, we used OpenGL. OpenGL is the name for
the specification that describes the behaviour of a rasterization-based rendering system. It
defines the API through which a client application can control this system (FAQ - OpenGL
Wiki, 2019). Our simulation specifically used an OpenGL library called GLFW 3.4. GLFW is
an Open Source, multi-platform library for OpenGL, OpenGL ES and Vulkan development
on the desktop. It provides a simple API for creating windows, contexts and surfaces,
receiving input and events (An OpenGL Library | GLFW, 2024). Furthermore, to load needed
OpenGL extensions, we used GLEW 1.13. The OpenGL Extension Wrangler Library
(GLEW) is a cross-platform open-source C/C++ extension loading library. GLEW provides
efficient run-time mechanisms for determining which OpenGL extensions are supported on
the target platform (GLEW: The OpenGL Extension Wrangler Library, 2017). Finally, as
computer graphics regularly utilise matrices for tasks like rendering and perform different
calculations with these, we used OpenGL Mathematics. OpenGL Mathematics (GLM) is a
header only C++ mathematics library for graphics software based on the OpenGL Shading
Language (GLSL) specifications (G-Truc, z.d.). This combination of libraries made for a
cross-platform OpenGL application with the necessary functionality to create our desired
simulated environment.

Figure 4, 3D model of the arm used in this project.

Figure 4 displays the 3D model that we used in our project, a one-on-one replica of
our physical unit. Importing the model into our simulation was not difficult, since we based
our arm on the existing BCN3D Moveo. This open-source project already contained files for
3D rendering, so we only had to update them with the changes we made in our physical
model. The aforementioned graphics libraries finally imported these files and made the model
ready for use.

Programming environment

The goal of the programming environment is to provide an intuitive interface for
creating routines for the robotic arm. Furthermore, we wanted to make it useable regardless
of programming knowledge. That is why we opted for a block-based approach. This way,
instructions made by the user would be independent of the backend implementation. The user
only has to choose from a variety of instruction nodes and input the required parameters for it
to work.

de editor loaded

sfully

red Modes X

e current node

Save

Load saved node
setups

all Nodes, json

Figure 5, overview of programming environment

As you can see in figure 5, there is a window listing all the possible types of nodes.
Most of these have parameters that the user needs to fill in. To create an actual routine with
multiple nodes, the user will need to select and place these nodes, fill in the required
parameters and link them in the order of execution. Once the user has done this and wants to
execute the routine, they can either choose to send it to the simulation or the physical unit by
clicking the corresponding button. Otherwise, the user can choose to save this configuration
or to load another one. Furthermore, there is an information window that gives the user
additional information, e.g. error messages.

To create this user interface, we used Dear ImGui, a self-contained, renderer-agnostic
graphics library for C++ (Ocornut, z.d.). The initial reason why we even looked at this library
was because we had already heard of it before, but never used it. We eventually decided on
ImGui for several reasons. Firstly, ImGui is compatible with OpenGL, which is essential for
it to be properly integrated into our project. Secondly, it is self-contained, meaning that it has
no external dependencies. Therefore, we already avoided issues with incompatible versions
of libraries or libraries that are not available on all operating systems. Finally, Dear ImGui

provides a clean, simplistic interface, which we found fitting for the overall aesthetics of our
application.

To assist us in creating our programming environment within the timeframe of this
course, we used a premade node editor for the Dear ImGui library. This editor took care of
many interactions in the environment for us. What we did was interpret the inputs that the
node editor received and connect this component to the rest of our application.

One important further feature we implemented to significantly improve the quality of
life is the ability to save and load a routine created in the editor. This saves a substantial
amount of time by not having to recreate a whole routine every time you use the application
and allows you to easily switch between multiple routines.

Miscellaneous

Additionally, the project contains a YAML parser. Originally, this parser was used to
handle configuration files that held all sorts of data about the robotic arm. Later, most of this
functionality was moved to ini files with its own parser, because this format was more fitting
to structure the data needed to render the arm. However, it is still used in certain places within
our software.

For the software to be able to connect to the physical arm, we send POST requests to
the web server running on the Raspberry Pi containing the necessary G-code, a popular 3D
printing programming language. Sending these requests is done with the help of the curlpp
wrapper of the libcurl library, a popular URL transfer library in C++. The complete process
goes as follows, we first translate all the instructions assigned to the arm to the corresponding
G-code and then send it over to the physical unit, where the G-code gets parsed into
instructions that can be sent to the microcontroller. Although not actively used in the final
version of our project, functionality to save the arm’s current routine to G-code in a file or
load G-code from a file into the application has been implemented as well.

Kinematics

One of the core aspects of this project was the kinematics. This paper has mentioned
them several times already, thus you will likely have a general idea of what these are, but we
wanted to give a more thorough explanation about this subfield of physics and mathematics
that played a key role both in the physical side and the simulated one. The focus of this
chapter will be on how we applied kinematics to our project, and not on the actual
calculations.

Firstly, we need to differentiate between the two types of kinematics. Using the angles
of the joints to calculate the coordinates of the arm's current position is called forward
kinematics. Starting from the coordinates of the current position and calculating the angle of

each joint needed to achieve this position is called inverse kinematics. Both cases require you
to go through a complex mathematical process that is prone to error.

Forward kinematics

Due to only knowing the angles of the joints at startup, we use forward kinematics to
find the initial position of the arm. The actual calculations are simpler than those of the
inverse kinematics because it is mostly just multiplying the transformation matrices of the
joints. We initially used the numpy package to do these calculations in Python, but we had a
loss of accuracy that exceeded the acceptable threshold. For that reason, we switched to the
sympy package. Sympy is a lot slower but makes up for it with a significant increase in
accuracy and as we only use it once at startup, this amount of latency is acceptable.

Inverse kinematics

Inverse kinematics are used repeatedly in both the firmware for the physical arm and
the simulation. It’s the key factor for every movement the arm performs. With such a
complex system as a robotic arm, that can move along multiple axes and perform different
rotations as well, even a simple movement requires a substantial amount of synergy between
all parts. Every component needs to execute its instruction with enough accuracy and the
correct timing.

The first step is to find the spherical wrist of the arm, which is located in the fifth
joint. Using matrix multiplications, we can work our way back from the position we started
with to the position of the spherical wrist. The next step is to use trigonometric formulas to
calculate the angles of the first, second and third joints. After doing that, we use these angles
to discover the position of the third joint in space, similar to the forward kinematics.

While the first, second and third joints dictate the translation, the fourth, fifth and
sixth joints dictate the rotation of the wrist. Thus, after obtaining the transformation matrix
for the position of the third joint, we only need the part that defines its rotation. Afterwards,
we need to “subtract” the rotation of the third joint from the overall rotation of the arm to find
the matrix defining the yaw, pitch and roll of the wrist. Using trigonometry once again, we
can then find the angles for the last three joints.

The inverse kinematics for the physical arm were done on the Raspberry Pi 5, after
receiving the instructions on the webserver. The calculations were made in Python with the
use of the numpy package. Contrary to the situation with the forward kinematics, this time
the accuracy was acceptable and because the inverse kinematics were used frequently, speed
was of the essence. The inverse kinematics for the simulation were done in C++ with the use
of the GLM library, which specialises in matrix computations.

Challenges

Solving such a complex problem can be quite challenging. Firstly, understanding the
theory behind it already requires a certain level of mathematical insight. Secondly, as you
might have noticed from the explanation already, the equations are highly dependent on the
type of robotic arm you use.

For example, if your arm has another amount of joints, the equations will be
completely different. It is not possible to use the same calculations of a unit with six joints for
a unit with three joints. Moreover, you need precise measurements for your robotic arm as
well. Fortunately, we used calculations that utilise Denavit-Hartenberg parameters. These
parameters allow you to pass on your measurements as variables in the different equations,
meaning that if you wanted to use a different arm (with the constraint of having the same
amount of joints) you only have to pass the measurements as Denavit-Hartenberg parameters
to the equations for it to work.

Another problem that we ran into is that the equations work with the centre of a joint.
In reality, the joint is an object with a certain volume with the consequence that even if the
kinematics decide that a certain position is theoretically reachable, the volumes of the
different components might conflict, e.g. in the simulation, it would cause the model to clip
through itself. For that reason, it was important to add extra methods that consider this and
place the necessary limits on the joints.

Lastly, a challenge we encountered was that the arm obviously cannot teleport, but
has to travel a route to get to their destination. Just calculating the angles for the joints for the
destination is not enough. We had to interpolate between the starting position and the end
position and apply the inverse kinematics to every interpolated point. Of course, this
therefore meant that we had to handle cases where one or more interpolated points may not
have been reachable, but the end position was, or the other way around.

Conclusion

This study has provided a comprehensive overview of the development process for
this project, detailing the methodologies and tools employed to achieve our objectives. The
discussion was structured in two key parts: first, an in-depth analysis of each system layer,
outlining our goal for each part, the selected technologies, and the reasons behind our
decisions; and second, an exploration of kinematics, a fundamental concept in robotics.
Beyond the technical insights gained, this project also offered valuable experience in team
collaboration and large-scale project management.

10

References

FAQ - OpenGL Wiki. (2019, 22 April).

https://www.khronos.org/opengl/wiki/FAQ#What_is_OpenGL?

An OpenGL library | GLFW. (2024, 23 februari). GLFW.

https://www.glfw.org/

GLEW: The OpenGL extension Wrangler Library. (2017, 31 juli).
https://glew.sourceforge.net/

Ocornut. (z.d.). imgui/docs/README.md at master - ocornut/imgui. GitHub. Consulted on
the 23rd of March 2025,
https://github.com/ocornut/imgui/blob/master/docs/README.md

Thedmd. (z.d.). GitHub - thedmd/imgui-node-editor: Node Editor built using Dear ImGui.
GitHub. Consulted on the 23rd of March 2025,

https://github.com/thedmd/imgui-node-editor/tree/master

FastAPI. (z.d.). Consulted on the 23rd of March 2025,
https://fastapi.tiangolo.com/

Ben3d. (z.d.). GitHub - BCN3D/BCN3D-Moveo: Open Source 3D Printed Robotic Arm for
educational purposes. GitHub. Consulted on the 23rd of March 2025,

https://github.com/BCN3D/BCN3D-Moveo

Wikipedia contributors. (2025, 17 maart). Kinematics. Wikipedia.

https://en.wikipedia.org/wiki/Kinematics
Chris Annin. (2024, 10 februari). 6 Axis Robot Forward & Inverse Kinematics Tutorial -
Denavit Hartenberg Parameters With the AR4-MK2 [Video]. YouTube.

https://www.youtube.com/watch?v=FNuiNmogaZM

11

https://www.khronos.org/opengl/wiki/FAQ#What_is_OpenGL
https://www.glfw.org/
https://glew.sourceforge.net/
https://github.com/ocornut/imgui/blob/master/docs/README.md
https://github.com/thedmd/imgui-node-editor/tree/master
https://fastapi.tiangolo.com/
https://github.com/BCN3D/BCN3D-Moveo
https://en.wikipedia.org/wiki/Kinematics
https://www.youtube.com/watch?v=FNuiNmoqaZM

Jbeder. (z.d.). GitHub - jbeder/yaml-cpp: A YAML parser and emitter in C++. GitHub.
Consulted on the 24th of March 2025,
https://github.com/jbeder/yaml-cpp

Rookfighter. (z.d.). GitHub - Rookfighter/inifile-cpp: A header-only and easy to use Ini file
parser for C++. GitHub. Consulted on the 24th of March 2025,
https://github.com/Rookfighter/inifile-cpp

Jpbarrette. (z.d.). GitHub - jpbarrette/curlpp: C++ wrapper around libcURL. GitHub.
Consulted on the 24th of March 2025,
https://github.com/jpbarrette/curlpp

G-Truc. (z.d.). GitHub - g-truc/glm: OpenGL Mathematics (GLM). GitHub. Consulted on the
24th of March 2025,

https://github.com/g-truc/elm

Welcome to Pydantic - Pydantic. (z.d.). Consulted on the 24th of March 2025,

https://docs.pydantic.dev/latest/

12

https://github.com/jbeder/yaml-cpp
https://github.com/Rookfighter/inifile-cpp
https://github.com/jpbarrette/curlpp
https://github.com/g-truc/glm
https://docs.pydantic.dev/latest/

	
	
	
	
	
	
	
	
	Revealing the secrets behind our robotic arm: an in-depth analysis of the architecture and inverse kinematics
	Index
	Introduction
	Architecture
	Hardware
	Firmware
	Software
	Simulation
	Programming environment
	Miscellaneous

	Kinematics
	Forward kinematics
	Inverse kinematics
	Challenges

	Conclusion
	References

